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’ INTRODUCTION

The detection and identification of bacteria are pressing
problems in both medicine and industry.1,2 A patient may
present to the physician symptoms consistent with a bacterial
infection, but the physician may be unable to address the
infection with the appropriate antibiotic until the identity or
antibiotic susceptibility of the bacteria has been determined; as a
consequence, sepsis remains one of the leading causes of death
even among first-world nations.1 In industry, many products
must be screened after manufacture for bacterial contamination
before they may be released, and as a consequence, regulation of
the food industry must be particularly stringent.2 Existing
methods for identification of pathogenic bacteria are severely
limited by the necessity of long culturing times, the need for
highly trained laboratory personnel, and the requirement of
expensive and high-maintenance equipment.3�5

Bacteria stink: that is, they produce volatile organic com-
pounds (VOCs) to which the mammalian olfactory system is
highly responsive. Consequently, an experienced microbiologist
can readily identify many bacteria by smell. We have previously
developed a simple colorimetric sensing array6 for the detection
of VOCs7 and discrimination among complex mixtures;8 we
report here that these arrays provide a rapid and quantitative
method for the identification not only of the bacterial species but
even of the specific strain of a single species, based on volatile
metabolites produced by the bacteria. We find that a disposable
sensor array placed in a standard Petri dish and imaged with an

ordinary flatbed scanner is capable of identifying human patho-
genic bacterial strains in less than 10 hours, which represents a
substantial improvement over current clinical techniques in
terms of speed, ease of use, and cost.

Traditional techniques for both manual and automated bac-
terial identification are based on the biochemical characteristics
of eachmicroorganism as defined by yes/no answers to a series of
biochemical tests. In essence, these tests differentiate and identify
bacteria by identifying specific bacterial metabolites as a function
of available nutrients. A much less explored alternative, however,
would be to identify bacteria by monitoring their metabolic
output from growth on a single complex nutrient mixture. This
strategy arises from the well-established knowledge that different
species of bacteria consuming the same nutrients produce
different metabolites. Different species, and even different strains
of the same species, emit distinct profiles of enzymatic reaction
products such as amines, sulfides, and fatty acids.9�11 Given the
high sensitivity of colorimetric sensors to numerous VOCs, we
expected that the various volatile metabolites produced by
different bacterial strains might provide identifying fingerprints
in the response of the sensor arrays.

Toward that end, we have used a cross-responsive colorimetric
sensor array to monitor the complex composite of volatile
compounds produced by 10 bacterial strains grown in replicate
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ABSTRACT: Rapid identification of both species and even
specific strains of human pathogenic bacteria grown on standard
agar has been achieved from the volatiles they produce using a
disposable colorimetric sensor array in a Petri dish imaged with
an inexpensive scanner. All 10 strains of bacteria tested, includ-
ing Enterococcus faecalis and Staphylococcus aureus and their
antibiotic-resistant forms, were identified with 98.8% accuracy
within 10 h, a clinically important time frame. Furthermore, the
colorimetric sensor arrays also proved useful as a simple
research tool for the study of bacterial metabolism and as an easy method for the optimization of bacterial production of fine
chemicals or other fermentation processes.
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on solid media in closed Petri dishes. The sensor arrays consist of
36 chemically responsive dyes, including metalloporphyrins, pH
indicators, metal salts, and solvatochromic dyes, that change
color when exposed to a broad range of volatile analytes. Given
the wide range of VOCs produced by bacteria,9�11 the chemical
diversity of the sensor elements present in our array is critical to
its capability to respond to broad classes of individual analytes
and its ability to distinguish among complex mixtures.

’EXPERIMENTAL SECTION

Bacteria. Bacterial strains were purchased from the American Type
Culture Collection (Manassas, VA) and were cultured following man-
ufacturer protocols before use. Bacteria were grown in tryptic soy broth
(TSB) and plated during log phase growth on tryptic soy agar containing
5% sheep blood (Becton Dickinson, Franklin Lakes, NJ). Bacterial
suspensions were prepared by inoculating 5 mL of TSB with a single
colony and allowing it to grow overnight. A subculture then was
prepared in 5 mL of fresh TSB and shaken at 37 �C for 3 h to achieve
the desired inoculum density of 0.5�5 on theMcFarland turbidity scale.
This equates to∼3.0� 108�1.5� 109 CFU/mL. Next, 10�250 μL of
the subculture was spread onto a 60 mm TSA/sheep blood Petri dish. A
control (10�250 μL of TSB broth without the bacterial inoculum) was
conducted in parallel for each experiment.
Colorimetric Sensor Array. The disposable colorimetric sensor

array and its construction have been previously described,7 and the
specific dyes used for this study are listed in the Supporting Information,
Table S1. An array was mounted in an inert platform that was inserted
into the lid of the Petri dish. The Petri dish was closed and inverted onto
an ordinary flatbed scanner (as shown in Figure 1) housed in an
incubator at 35�37 �C; the printed side of the array faced toward the
scanner. Data were collected using an Epson Perfection 3490 scanner
every 30 min. Color difference maps were generated by averaging the
RGB color values for the center of each spot and subtracting from them
the RGB averages for the baseline image:ΔR,ΔG,ΔB, i.e. red value after
exposure minus red value at 90 min, etc. Substantial sensor array color
changes arising from the media occur upon exposure as the media
equilibrates to the incubator temperature of 37 �C, so the baseline image
was taken at 90 min, which was sufficient for complete equilibration but
before any significant bacterial growth had occurred. A complete
database is available in the Supporting Information.

’RESULTS AND DISCUSSION

Current Clinical Bacterial Detection.Bloodstream infections
by bacteria (i.e., bacteremia) are among the most serious medical
problems because of their significantmorbidity andmortality.1 In
the United States, an estimated 750,000 patients annually develop
bloodstream infections, with associated mortality rates ranging
from 14 to 50%. Sepsis and septic shock are the tenth leading
cause of death in the U.S. and the third most common cause of
death in Germany; furthermore, sepsis and related complications
represent a significant economic burden, with an estimated
annual cost beyond $17 billion in the U.S. alone.1

There remain major unmet needs to shorten and improve
current clinical and laboratory methods for the detection and
identification of bloodstream infections, and molecular diagnostic
methods (ranging frommass spectral analysis to PCR to peptide�
nucleic acid fluorescent probes, etc.) have yet to have a major
impact on such diagnoses.3d Blood cultures remain the “gold
standard” for the diagnosis of bacteremia.1,2 Current standard
clinical procedures2 start with culturing (generally in liquid growth
media), for example of blood samples, which generally takes

24�48 h to confirm the presence of bacteria but can take much
longer for slow-growing bacteria (e.g., tuberculosis generally
requires more than a week). Microorganisms taken from positive
blood cultures are then subjected to rapid gram staining (∼10min)
but then must be subcultured and analyzed by culture-based
systems such as the Analytical Profile Index (API) test or antibiotic
susceptibility tests (e.g., bioM�erieux’s automated VITEK system),
which require another 18�48 h.3 The reader is referred to an
excellent recent review of clinical procedures by Riedel and
Carroll.1a Nucleic-acid-based identification,4,5 such as fluorescent
in situ hybridization (FISH), can be performed directly from
positive blood cultures that require only 6 h, although identifica-
tion by culture-based systems is needed for confirmation.4d,5e,f

Bacterial Detection by Electronic Nose. There have been
various studies using “electronic nose” technologies12,13 (i.e., electro-
nic sensor arraysmade from conductive polymers, metal oxides, etc.)
for headspace analysis in attempts to identify bacterial strains.14�16

Most such studies use a single time sampling of the headspace over a
mature bacterial culture.15 The temporal profile of the gases
produced in a closed culture environment, however, provides
valuable additional information for bacterial identification. In addi-
tion, the VOCs produced by bacteria in a closed environment
approximate an integral of growth and may therefore improve the
rapidity of analysis. In those few studies in which the headspace was
sampled at multiple time points,16 bacterial discrimination was
generally still quite limited. In part, this is due to the inherent
limitations6 in low dimensionality of prior array technology,12,13

which relies primarily on weak and nonselective analyte�sensor
interactions: in general, prior electronic nose technology needs only
twodimensions, or atmost three, to capture >95%of the total dataset
variance. As such, previous bacterial identification efforts with
traditional electronic nose technology have typically required com-
plex pattern recognition algorithms in order to achieve modest
success, even when attempting to classify small numbers of bacterial
species.14�16

Colorimetric Sensor Arrays. The colorimetric sensor arrays
are disposable, one-time-use sensors that are simply placed in the
headspace of bacterial cultures and imaged with an ordinary
flatbed scanner at multiple time points during bacteria growth
(Figure 1). The responses of the chemically responsive dyes used
in the array are in general reversible. As shown below, the array

Figure 1. (a) Colorimetric sensor array used for bacterial identification
experiments; details provided in Supporting Information Table S1.
(b) Schematic of the experimental apparatus consisting of an inverted
closed Petri dish containing growth media (tryptic soy agar (TSA) with
5% sheep blood) upon which was spread the appropriate liquid bacterial
culture, an array positioned in the headspace, and an ordinary flatbed
scanner. The array was scanned and images collected as a function
of time.



7573 dx.doi.org/10.1021/ja201634d |J. Am. Chem. Soc. 2011, 133, 7571–7576

Journal of the American Chemical Society ARTICLE

can thereforemonitor changes in the volatile metabolites evolved
by each bacterial strain over time and thereby differentiate one
bacterial species from another.
Representative data arising from exposure of the sensor array

to Escherichia coli are shown in Figure 2, as both color difference
maps and a time response profile that show the change in spot
colors as a function of bacterial growth time. Several notable
features are readily apparent in Figure 2. First, there is a time lag
(∼150 min in this case) before appreciable signal is observed
above baseline. As will be shown below, the duration of this lag
is species and strain dependent. Once signal is observed, it
evolves through several stages; different volatile analytes appear
to be generated at different points during growth. Note, for
example, the steeply negative color changes occurring between
300 and 400 min. In addition, several color channels pass
through a maximum or minimum and then reverse direction,
returning to their baseline values or crossing the baseline to
change sign. This too implies changes in the nature of volatiles
emitted over time.

Time response profiles were collected in multiple replicates for
nine additional bacterial strains (6�24 replicates per strain, cf.
Supporting Information Table S2). Representative color difference
maps and time response profiles for each strain are shown inFigures 3
and 4, respectively. All quantitative analyses were based on the full
digital data, which are provided in Supporting Information Table S3.
Array Response to Bacterial Growth. As illustrated in

Figures 3 and 4, each strain of bacterium has its own individual
color change fingerprint. Even by simple visual examination of
the color difference map (Figure 3) or of the time response
profiles (Figure 4), all 10 of the bacterial strains are readily
differentiated; quantitative classification (discussed below) is

Figure 2. Color difference maps and time response profile resulting
from colorimetric sensor array exposure to a growing culture of E. coli,
American Type Culture Collection (ATCC) No. 25922. (a) The color
difference maps (i.e., ΔR, ΔG, ΔB) at select times were generated by
subtracting the average RGB of each spot from a baseline image (taken at
90 min). For the purpose of effective visualization only, the color range
shown in the color range maps is expanded from RGB values of 0�31 to
0�255. (b) The color change values versus time plotted for all color
channels (ΔR,ΔG, andΔB values for each spot, i.e., 108 color channels)
at each time point.

Figure 3. Color difference maps for 10 different bacterial strains
resulting from colorimetric sensor array exposure to Petri dish growing
cultures after 480min. The color range shown is the same as in Figure 2a.

Figure 4. Time response profiles for 10 different bacterial strains (name
and ATCC number given in each panel). For each bacterial strain, the color
change values versus time are plotted for all color channels at each timepoint.
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highly accurate using standard statistical methods. This includes
the differentiation of Staphylococcus aureus from a methicillin-
resistant S. aureus (MRSA), as well as Enterococcus faecalis from a
vancomycin-resistant E. faecalis (VRE). There are, moreover,
genera- and species-based resemblances. This is most apparent in
the two strains of E. coli and E. faecalis, respectively, which show
the greatest interpair similarity in the time response profiles
(Figure 4).
There are at least three possible closely related contributions to

the changes and reversal of color features in the array, each of which
reflect the relationship between the chemical input and output of
bacteria. The dominant contributor is likely to be conventional
diauxie, in which the bacteria consume one nutrient first and then
switch to alternate nutrients when the first is exhausted:17 as the
input nutrients change, so too would the evolved volatiles. Con-
sistentwith this, the response profiles do depend strongly on the type
of solid media (such as TSA, TSA/sheep blood or Luria�Bertani)
used as a nutrient source. A second contributor to the temporal
changes in the array response (which is generally reversible7) may be
the bacterial consumption of a previously excreted product. For
example, many bacteria ferment rich nutrients (e.g., glucose) and
excrete acetate; acetate can then, upon the exhaustion of better
carbon sources, be consumed and oxidized to carbon dioxide.18 A
third possibility is a transition from aerobic to anaerobic growth, itself
a form of diauxie.19 Chemical analysis of the complex mixture of
volatiles produced during bacterial growth presents a significant
challenge for conventional component-by-component analyses (e.g.,
GC-MS):9�11 fortunately, one need not know the identities of the
individual volatile products for the identification of the bacteria using
a sensor array approach, which gives a composite response to the
complex mixture of bacterial metabolites.
The complex structures observed in the bacterial response

profiles underscore the importance of incorporating broad
chemical diversity in a single sensor array. These structures also
emphasize the value in having a reversible, real-time sensor
continuously positioned in the headspace of growing bacterial
cultures. The additional advantage of having a disposable,
inexpensive sensor array allows for the facile monitoring of
bacterial cultures individually and continuously.
Quantitative Classification. Classification of specific bacter-

ial strains based on the colorimetric sensor array data was
successfully accomplished using a variety of independent tech-
niques. For quantitative analysis, the color change values for each
experiment were analyzed as “time-stacked” vectors in order to
capture the temporal behavior of the response profiles. The
entire time-stacked vector, ν, from a single experiment is given by
eq 1, using images collected every 30 min for 10 h, with the
90 min image as the baseline for evolution of differences in red,
green, and blue values for all 36 spots:

ν ¼ ΔR1, 120min,ΔG1, 120min,ΔB1, 120min,

ΔR2, 120min,ΔG2, 120min,ΔB2, 120min, ...

ΔR36, 120min,ΔG36, 120min,ΔB36, 120min,

ΔR1, 150min,ΔG1, 150min,ΔB1, 150min, ... ...

ΔR36, 600min,ΔG36, 600min,ΔB36, 600min ð1Þ
Surprisingly, accurate identification was possible even using

simple Euclidean distances, which compares only the overall total
response of the array. Average time-stacked vectors were calcu-
lated for each strain of bacteria, and the Euclidean distance
between each of the 164 individual experimental vectors and each

of the average vectors was determined. Each input experimental
vector was classified as the strainwhose average vector was nearest.
Using the time stack data from 90 to 600 min post innoculation,
the correct classification was achieved for 162 of the 164 experi-
ments (i.e., 98.8% accuracy); the only two misclassifications were
between E. faecalis and its vancomycin resistant mutant (VRE).
For the same experiments, the classification accuracy was 95% at
420 min culturing time and 85% at 300 min.
Beyond using just the Euclidean distance of the array response,

there is much greater information available in the variance of the
specific spots of the array. The ability of the colorimetric sensor
array to discriminate among different bacteria is due, in part, to the
high dimensionality of the data. Principal component analysis
(PCA) uses the variance in the array response to evaluate the
relative contributions of independent dimensions and generates
optimized linear combinations of the original 108 dimensions so as
to maximize the amount of variance in as few dimensions as
possible (46�49). Using standard PCA, the data from 164
experiments were analyzed. As we have observed with colorimetric
sensor arrays applied to many other systems,6�8 the data have
exceptionally high dispersion, requiring 7 and 23 dimensions to
capture 90% and 95% of the total variance, respectively (SI Figure
S1 provides the PCA scree plot). The first three dimensions in
PCA space account for only 79% of the total variance. None-
theless, a three-dimensional PCA score plot (Figure 5) shows very
good clustering of 164 experimental trials on the 10 bacteria.
The extremely high dispersion of our colorimetric sensor array

data reflects the wide range of chemical-property space being
probed by the choice of 36 chemically responsive dyes. Conse-
quently, chemically diverse mixtures of volatiles produced by
bacteria are easily recognizable, and even closely related bacteria
can be distinguished. In contrast, data from most prior electronic
nose technologies are dominated by only two or three independent

Figure 5. PCA score plot using the three most important principal
components based on all 164 trials of 10 bacterial strains and controls. The
resolution between bacterial classes is in fact much better than can be
shown by any three-dimensional PCA plot because the first three principal
components account for only 79% of the total variance. Color code: black,
S. aureus; red, MRSA; dark green, S. epidermidis; purple, S. sciuri; orange,
P. aeruginosa; white, E. faecium; light blue, E. faecalis; gray, E. faecalis VRE;
yellow, E. coli 25922; light green, E. coli 53502; dark blue, control.
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dimensions (one of which, analyte hydrophobicity, generally ac-
counts for >90% of total variance); this is the inherent result of
relying on van der Waals and other weak interactions for molecular
recognition.
Given the high dimensionality of data from the colorimetric

sensor array, the usual two- or three-dimensional PCA plots (e.g.,
Figure 5) cannot adequately represent the discrimination among
experimental trials. Instead, we prefer the use of another quite
standard chemometric approach, hierarchical cluster analysis
(HCA), which is based on the grouping of the analyte vectors
according to their spatial distances in their full vector space.20

HCA has the advantages of being model-free (unlike, for
examples, linear discriminant analysis or neural nets) and of
using the full dimensionality of the data. As shown in Figure 6,
HCA generates dendrograms based on clustering of the array
response data. Excellent classification is observed, with three
misclassifications among the 164 trials (all three confusions are
between E. faecalis and its vancomycin-resistant mutant, VRE).
To test quantitatively the ability of a more sophisticated

statistical model to classify new inputs (i.e., unknown cultures)
as would be required in medical diagnostics, a randomized, strain-
proportional 70% of the time stacks was used to train a Bayesian
linear classifier in PCA space.21 This classifier was then given the
remainder of the data, unlabeled, to be classified as one of the 11
strains, and the rate of correct classification was recorded. This was
repeated 1000 times, randomizing the designated 70% each time.

Analysis using the first seven principal components (which
captured 90% of the total variance) produced 99.2% correct
classification. Twenty-three principal components (capturing
95% of the variance) produced 99.5% correct classification.
The changes in the array response as a function of time for

each bacterial strain imply that each strain of bacterium produces
different volatile metabolic products at different rates. This
suggests in turn that such arrays may also prove useful as an
inexpensive research tool for the study of bacterial metabolism.
In addition, the colorimetric sensor arrays are likely to provide an
easy method for the optimization of bacterial production of fine
chemicals or other fermentation processes.
The biomedical applications of this colorimetric sensing array

technology are also potentially significant. The sensor arrays
successfully identified all 10 strains of bacteria tested, including
E. faecalis and S. aureus together with their antibiotic resistant
forms, by monitoring gases evolved during a 10 h growth of
bacterial cultures. This time frame is clinically important: because
we are able to quickly monitor growth rates (even after just 3 h as
shown in Figure 4), parallel monitoring of bacterial growth in
various antibiotic-doped media should provide physicians with
valuable and timely information to guide treatment. Because the
technology developed here is inexpensive and builds easily on
conventional culturing, it may find widespread application in less
economically developed regions.
The initial studies reported herein are being used to guide

development of arrays with greater sensitivity and classification
capabilities for bacteria. These arrays are currently being applied
to blood culture systems using liquid growthmedia with very low
initial inoculum concentrations. In addition, this colorimetric
sensor array has also proven highly effective in point-of-care
diagnosis of bacterial sinusitis22 and in lung cancer screening,23

and the possibility of other applications of colorimetric sensor
arrays for medical diagnosis by breath are likely to emerge.
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